How do you convert r=4sec(theta)(1+ tan(theta))r=4sec(θ)(1+tan(θ)) into cartesian form?

1 Answer
Oct 26, 2016

1/4=1/x+1/y14=1x+1y

Explanation:

Polar coordinates (r,theta)(r,θ) and Cartesian coordinates (x,y)(x,y) are related as

x=rcosthetax=rcosθ and y=rsinthetay=rsinθ, i.e. tantheta=y/xtanθ=yx

Hence, r=4sectheta(1+tantheta)r=4secθ(1+tanθ) can be written as

rcostheta=4(1+tantheta)rcosθ=4(1+tanθ)

or y=4(1+y/x)y=4(1+yx)

or xy=4x+4yxy=4x+4y

or (xy)/(4xy)=(4x)/(4xy)+(4y)/(4xy)xy4xy=4x4xy+4y4xy

or 1/4=1/y+1/x14=1y+1x or 1/4=1/x+1/y14=1x+1y