How do you convert r = 3sin(theta) into a cartesian equation?

1 Answer
Sep 22, 2015

Use r = sqrt(x^2+y^2) and sin(theta) = y / r to get:

x^2+y^2 = 3y

Explanation:

r = sqrt(x^2+y^2) and sin(theta) = y / r

So r = 3sin(theta) becomes:

sqrt(x^2+y^2) = (3y)/sqrt(x^2+y^2)

Multiply both sides by sqrt(x^2+y^2) to get:

x^2+y^2 = 3y

graph{x^2+y^2-3y=0 [-4.913, 5.087, -0.98, 4.02]}