How do you convert r^2(cos2(theta))=1r2(cos2(θ))=1 into cartesian form?
1 Answer
Feb 26, 2016
Explanation:
Using the formulae that links Polar to Cartesian coordinates.
• x = rcostheta rArr costheta = x/r ∙x=rcosθ⇒cosθ=xr
• y = rsintheta rArr sintheta = y/r∙y=rsinθ⇒sinθ=yr and
color(blue)" Double angle formula " Double angle formula
• cos(2theta) = cos^2theta - sin^2theta ∙cos(2θ)=cos2θ−sin2θ hence
: r^2(cos(2theta)) = r^2( cos^2theta - sin^2theta) = 1:r2(cos(2θ))=r2(cos2θ−sin2θ)=1
rArr r^2(x^2/r^2 - y^2/r^2 ) = 1 ⇒r2(x2r2−y2r2)=1 and 'taking out'
1/r^2 " as a common factor " 1r2 as a common factor
rArr cancel(r^2)/cancel(r^2) (x^2 - y^2) = 1 rArr x^2 = y^2