How do you convert r^2(cos2(theta))=1r2(cos2(θ))=1 into cartesian form?

1 Answer
Feb 26, 2016

x^2 = y^2x2=y2

Explanation:

Using the formulae that links Polar to Cartesian coordinates.

• x = rcostheta rArr costheta = x/r x=rcosθcosθ=xr

• y = rsintheta rArr sintheta = y/ry=rsinθsinθ=yr

and color(blue)" Double angle formula " Double angle formula

• cos(2theta) = cos^2theta - sin^2theta cos(2θ)=cos2θsin2θ

hence : r^2(cos(2theta)) = r^2( cos^2theta - sin^2theta) = 1:r2(cos(2θ))=r2(cos2θsin2θ)=1

rArr r^2(x^2/r^2 - y^2/r^2 ) = 1 r2(x2r2y2r2)=1

and 'taking out' 1/r^2 " as a common factor " 1r2 as a common factor

rArr cancel(r^2)/cancel(r^2) (x^2 - y^2) = 1 rArr x^2 = y^2