How do you convert #r^2(cos2(theta))=1# into cartesian form?
1 Answer
Feb 26, 2016
Explanation:
Using the formulae that links Polar to Cartesian coordinates.
#• x = rcostheta rArr costheta = x/r #
#• y = rsintheta rArr sintheta = y/r# and
#color(blue)" Double angle formula "#
#• cos(2theta) = cos^2theta - sin^2theta # hence
#: r^2(cos(2theta)) = r^2( cos^2theta - sin^2theta) = 1#
#rArr r^2(x^2/r^2 - y^2/r^2 ) = 1 # and 'taking out'
# 1/r^2 " as a common factor " #
#rArr cancel(r^2)/cancel(r^2) (x^2 - y^2) = 1 rArr x^2 = y^2#