How do you convert # r= 2/(3cos(theta)-7sin(theta))# into cartesian form? Precalculus Polar Coordinates Converting Equations from Polar to Rectangular 1 Answer A. S. Adikesavan Jul 8, 2016 #3x-7y=2#. This straight line passes through (0, -2/7) and (2/3, 0). Explanation: Use #(x, y)=(r cos theta, r sin theta)and r > 0.# Answer link Related questions What is the polar equation of a horizontal line? What is the polar equation for #x^2+y^2=9#? How do I graph a polar equation? How do I find the polar equation for #y = 5#? What is a polar equation? How do I find the polar equation for #x^2+y^2=7y#? How do I convert the polar equation #r=10# to its Cartesian equivalent? How do I convert the polar equation #r=10 sin theta# to its Cartesian equivalent? How do you convert polar equations to rectangular equations? How do you convert #r=6cosθ# into a cartesian equation? See all questions in Converting Equations from Polar to Rectangular Impact of this question 2305 views around the world You can reuse this answer Creative Commons License