How do you convert r=2/(1+sin(theta))r=21+sin(θ) into cartesian form?

1 Answer
Jun 20, 2016

x^2+4y-4=0x2+4y4=0

Explanation:

If polar coordinates (r,theta)(r,θ) are written as (x,y)(x,y) in Cartesian coordinates, then

rcostheta=xrcosθ=x, rsintheta=yrsinθ=y and r^2=x^2+y^2r2=x2+y2

Hence, r=2/(1+sintheta)r=21+sinθ can be written as

r=2/(1+y/r)r=21+yr or r+y=2r+y=2 or r=2-yr=2y and on squaring

r^2=y^2-4y+4r2=y24y+4 i.e. x^2+y^2=y^2-4y+4x2+y2=y24y+4 or

x^2+4y-4=0x2+4y4=0, which is the equation of a parabola.

graph{x^2+4y-4=0 [-10, 10, -6.8, 3.2]}