How do you convert # (7, 5/6 π)# into cartesian form?

1 Answer
Jun 14, 2016

#:. (x,y) = (-7sqrt3/2,7/2).#

Explanation:

Let #(r,theta)# be the given polar co-ords. & let #(x,y)# be their Cartesian conversion.

Then, we know that #x=rcostheta, y=rsintheta.#

Hence, with #r=7, theta=5pi/6,# we get, #x=7cos5pi/6, y=7sin5pi/6.#

#:. x=7cos(pi-pi/6), y=7sin(pi-pi/6).#

#:. x=7(-cos(pi/6)), y=7sin(pi/6).#

#:. x=-7sqrt3/2, y=7/2#
#:. (x,y) = (-7sqrt3/2,7/2).#