How do you convert 3y= 2x^2-2x-y^2 3y=2x22xy2 into a polar equation?

1 Answer
Jul 26, 2018

r = 0r=0 and
r = ( 2 cos theta + 3 sin theta)/(2 cos^2 theta - sin^2 theta ) r=2cosθ+3sinθ2cos2θsin2θ.
This hyperbola passes through the pole ( O ), r = 0(O),r=0.

Explanation:

Conversion formula:

( x. y ) = r ( cos theta, sin theta ), r = sqrt (x^2 + y^2) >= 0(x.y)=r(cosθ,sinθ),r=x2+y20

2x^2 - y^2- 2x - 3y = 02x2y22x3y=0 converts to

r = 0r=0 and

r(2 cos^2 theta - sin^2 theta ) - ( 2 cos theta + 3 sin theta)) = 0r(2cos2θsin2θ)(2cosθ+3sinθ))=0.

This hyperbola passes through the pole ( O ), r = 0(O),r=0.

See graph.

graph{2x^2 - y^2- 2x - 3y = 0 [-20 20 -12 8] }

.

.