How do you convert #(-3,3)# to polar form?

1 Answer
Mar 5, 2016

#(3sqrt2,3pi/4)#

Explanation:

If Cartesian coordinate of point is (x,y)
and its polar coordinate is # (r,theta) #
then #x=rcostheta #and #y=rsintheta#
given x= -3 then #-3=rcostheta#
and y= 3 ,So #3=rsintheta#
#tantheta=-1#
both #tantheta ,costheta# are negative and# sin theta# is poitive So the angle#theta # will be in 2nd quadrant
Hence#theta =pi-pi/4=3pi/4#
#r^2= 3^2+(-3)^2#
#r=3sqrt2#
hence reqd polar coordinate is#(3sqrt2,3pi/4)#