How do you convert (3, 2pi/3)(3,2π3) into rectangular forms?

1 Answer
Dec 1, 2015

polar form: (3,(2pi)/3) rarr (3,2π3) rectangular form: (-3/2,(3sqrt(3))/2)(32,332)

Explanation:

Given (r,theta) = (3,(2pi)/3)(r,θ)=(3,2π3)

x= r*cos(theta) = 3*cos((2pi)/3) = 3*(-1/2) = -3/2x=rcos(θ)=3cos(2π3)=3(12)=32

y = r*sin(theta)=3*sin((2pi)/3) = 3*(sqrt(3)/2) = (3sqrt(3))/2y=rsin(θ)=3sin(2π3)=3(32)=332
enter image source here