How do you convert #(3, 2pi/3)# into rectangular forms? Precalculus Polar Coordinates Converting Coordinates from Polar to Rectangular 1 Answer Alan P. Dec 1, 2015 polar form: #(3,(2pi)/3) rarr # rectangular form: #(-3/2,(3sqrt(3))/2)# Explanation: Given #(r,theta) = (3,(2pi)/3)# #x= r*cos(theta) = 3*cos((2pi)/3) = 3*(-1/2) = -3/2# #y = r*sin(theta)=3*sin((2pi)/3) = 3*(sqrt(3)/2) = (3sqrt(3))/2# Answer link Related questions What is the formula for converting polar coordinates to rectangular coordinates? How do I convert polar coordinates #(5, 30^circ)# to rectangular coordinates? How do I convert polar coordinates #(3.6, 56.31)# to rectangular coordinates? How do I convert polar coordinates #(10, -pi/4)# to rectangular coordinates? How do I convert polar coordinates #(4,-pi/3)# to rectangular coordinates? How do I convert polar coordinates #(6, 60^circ)# to rectangular coordinates? How do I convert polar coordinates #(-4, 230^circ)# to rectangular coordinates? What is the Cartesian equivalent of polar coordinates #(sqrt97, 66^circ)#? What is the Cartesian equivalent of polar coordinates #(2, pi/6)#? What is the Cartesian equivalent of polar coordinates #(7, pi)#? See all questions in Converting Coordinates from Polar to Rectangular Impact of this question 6316 views around the world You can reuse this answer Creative Commons License