How do you convert (2,(-7pi)/6)(2,7π6) into cartesian form?

1 Answer
May 10, 2017

Use x=rcosthetax=rcosθ and y=rsinthetay=rsinθ. Answer: (-sqrt(3),1)(3,1)

Explanation:

Original problem: Convert (2, -(7pi)/6)(2,7π6) to Cartesian

To convert from polar coordinates to Cartesian form, we use the equations x=rcosthetax=rcosθ and y=rsinthetay=rsinθ.

Since we have (r,theta)(r,θ), we can simply substitute into the above formulas:
x=2cos(-(7pi)/6)x=2cos(7π6)
Using our unit circle trig values
x=2(-sqrt(3)/2)x=2(32)
x=-sqrt(3)x=3

y=2sin(-(7pi)/6)y=2sin(7π6)
Using our unit circle trig values
y=2(1/2)y=2(12)
y=1y=1

Therefore our final answer in Cartesian form is: (-sqrt(3),1)(3,1)