How do you convert #(-2,-2)# into polar form?

1 Answer
Jul 3, 2016

Polar coordinates are #(2sqrt2,(5pi)/4)#

Explanation:

If #(x,y)# are Cartesian coordinates and #(r,theta)# are corresponding polar coordinates, the relation between them is given by #x=rcostheta# and #y=rsintheta#.

Hence for point #(-2,-2)#,

#r=sqrt(x^2+y^2)=sqrt((-2)^2+(-2)^2)=sqrt(4+4)=sqrt8=2sqrt2#

and #sintheta=costheta=2sqrt2/(-2)=-1/sqrt2#

Hence #theta=(5pi)/4#

and polar coordinates are #(2sqrt2,(5pi)/4)#