How do you convert 1=(x+4)^2+(7y-2)^2 into polar form?

1 Answer
Oct 4, 2016

r^2(1+48sin^2theta)+r(8costheta-28sintheta)+19=0

Explanation:

The relation between rectangular Cartesian coordinates (x,y) and polar coordinates (r,theta) is given by

x=rcostheta, y=rsintheta and x^2+y^2=r^2

Hence y^2+(x-3)^2=9 can be rewritten as

(x+4)^2+(7y-2)^2=1

or (rcostheta+4)^2+(7rsintheta-2)^2=1

or (r^2cos^2theta+8rcostheta+16)+(49r^2sin^2theta-28rsintheta+4)=1

or r^2cos^2theta+8rcostheta+49r^2sin^2theta-28rsintheta+20-1=0

or r^2(1+48sin^2theta)+r(8costheta-28sintheta)+19=0