How do you convert #(-1/2, -sqrt3/2)# into polar form?
2 Answers
Explanation:
To convert from
#color(blue)"cartesian to polar form"# That is
#(x,y)to(r,theta)#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(r=sqrt(x^2+y^2))color(white)(2/2)|)))# and
#color(red)(bar(ul(|color(white)(2/2)color(black)(theta=tan^-1(y/x))color(white)(2/2)|)))# Here
#x=-1/2" and " y=-sqrt3/2#
#rArrr=sqrt((-1/2)^2+(-sqrt3/2)^2)=sqrt(1/4+3/4)=1# now
#(-1/2,-sqrt3/2)# is in the 3rd quadrant so we must ensure that#theta# is in the 3rd quadrant.
#rArrtheta=tan^-1((-sqrt3/2)/(-1/2))#
#=tan^-1(sqrt3)=pi/3larr" reference angle"#
#rArrtheta=(pi+pi/3)=(4pi)/3larr" 3rd quadrant"#
#rArr(-1/2,-sqrt3/2)to(1,(4pi)/3)#
Please see the explanation.
Explanation:
The polar coordinate system is an ordered pair,
To compute r from from Cartesian coordinates,
To compute
- If
#x > 0 and y>=0# m then use:#theta = tan^-1(y/x)# - If
#x = 0 and y > 0# , then use:#theta = pi/2# - If
#x = 0 and y < 0# , then use:#theta = (3pi)/2# - If
#x < 0# , then use:#theta = pi + tan^-1(y/x)# - If
#x > 0 and y < 0# , then use:#theta = 2pi + tan^-1(y/x)#
The appropriate one is equation 4:
The polar point is