How do you apply the ratio test to determine if Sigma 1/(lnn)^n from n=[2,oo) is convergent to divergent?

1 Answer
Mar 5, 2017

he series:

sum_(n=2)^oo 1/(lnn)^n

is convergent.

Explanation:

We have the series:

sum_(n=2)^oo 1/(lnn)^n

Now evaluate the ratio:

abs(a_(n+1)/a_n) = abs ( (1/(ln(n+1)^(n+1)) ) /(1/(lnn)^n)) = (lnn)^n/(ln(n+1)^(n+1)) = (lnn/ln(n+1))^n 1/ln(n+1)

Now consider the function:

f(x) = lnx/ln(x+1)

the limit for x->oo is in the form oo/oo so we can calculate it using l'Hospital's rule:

lim_(x->oo) lnx/ln(x+1) = lim_(x->oo) (d/dx lnx)/(d/dx ln(x+1)) = lim_(x->oo) (1/x)/(1/(x+1)) = lim_(x->oo) (x+1)/x =1

As f(n) = lnn/ln(n+1) we then have:

lim_(n->oo) lnn/ln(n+1) =1

and therefore:

lim_(n->oo) (lnn/ln(n+1))^n =1

Then:

lim_(n->oo) abs(a_(n+1)/a_n) = lim_(n->oo) (lnn/ln(n+1))^n 1/ln(n+1) = lim_(n->oo) 1/ln(n+1) = 0

which proves the series to be convergent.