How do solve the following linear system?: x+2y=1 , 6 x+3y=11 x+2y=1,6x+3y=11?

1 Answer
May 18, 2018

See a solution process below:

Explanation:

Step 1) Solve the first equation for xx:

x + 2y = 1x+2y=1

x + 2y - color(red)(2y) = 1 - color(red)(2y)x+2y2y=12y

x + 0 = 1 - 2yx+0=12y

x = 1 - 2yx=12y

Step 2) Substitute (1 - 2y)(12y) for xx in the second equation and solve for yy:

6x + 3y = 116x+3y=11 becomes:

6(1 - 2y) + 3y = 116(12y)+3y=11

(6 * 1) - (6 * 2y) + 3y = 11(61)(62y)+3y=11

6 - 12y + 3y = 11612y+3y=11

6 + (-12 + 3)y = 116+(12+3)y=11

6 + (-9)y = 116+(9)y=11

6 - 9y = 1169y=11

6 - color(red)(6) - 9y = 11 - color(red)(6)669y=116

0 - 9y = 509y=5

-9y = 59y=5

(-9y)/color(red)(-9) = 5/color(red)(-9)9y9=59

(color(red)(cancel(color(black)(-9)))y)/cancel(color(red)(-9)) = -5/9

y = -5/9

Step 3) Substitute -5/9 for y in the solution to the first equation at the end of Step 1 and calculate x:

x = 1 - 2y becomes:

x = 1 - (2 * -5/9)

x = 1 - (-10/9)

x = 1 + 10/9

x = 9/9 + 10/9

x = 19/9

The Solution Is:

x = 19/9 and y = -5/9

Or

(19/9, -5/9)