How do solve the following linear system?: 4x+3y=1 , 11x + 3y + 7 = 0 4x+3y=1,11x+3y+7=0?

1 Answer
May 5, 2017

x=-8/7=-1 1/7x=87=117

y=13/7=1 6/7y=137=167

Explanation:

Given: 4x+3y=14x+3y=1; 11x+3y+7=011x+3y+7=0

From 4x+3y=14x+3y=1 we can subtract 4x4x from both sides

to get 3y=1-4x3y=14x which we can substitute into the other

equation for 3y3y:

11x+3y+7=011x+3y+7=0

11x+1-4x+7=011x+14x+7=0

11x+1-4x+7=011x+14x+7=0

7x=-87x=8

x=-8/7x=87 answer x

Substitute value for xx into 4x+3y=14x+3y=1 to find yy:

4(-8/7)+3y=14(87)+3y=1

3y=1+32/73y=1+327

3y=39/73y=397

y=13/7y=137 answer y

To check, substitute into the givengiven equation:

11x+3y+7=011x+3y+7=0

11(-8/7)+3(13/7)+7=011(87)+3(137)+7=0

(-88/7)+(39/7)+(49/7)=0(887)+(397)+(497)=0

(-88)+(39)+(49)=0(88)+(39)+(49)=0

-88+88=088+88=0