How do solve the following linear system?: -4x-14y=28 , x-2y=8 4x14y=28,x2y=8?

1 Answer
Mar 12, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the second equation for xx:

x - 2y = 8x2y=8

x - 2y + color(red)(2y) = 8 + color(red)(2y)x2y+2y=8+2y

x - 0 = 8 + 2yx0=8+2y

x = 8 + 2yx=8+2y

Step 2) Substitute 8 + 2y8+2y for xx in the first equation and solve for yy:

-4x - 14y = 284x14y=28 becomes:

-4(8 + 2y) - 14y = 284(8+2y)14y=28

(-4 xx 8) + (-4 xx 2y) - 14y = 28(4×8)+(4×2y)14y=28

-32 - 8y - 14y = 28328y14y=28

-32 - 22y = 283222y=28

color(red)(32) - 32 - 22y = color(red)(32) + 28323222y=32+28

0 - 22y = 60022y=60

-22y = 6022y=60

(-22y)/color(red)(-22) = 60/color(red)(-22)22y22=6022

(color(red)(cancel(color(black)(-22)))y)/cancel(color(red)(-22)) = (2 xx 30)/color(red)(2 xx -11)

y = (color(red)(cancel(color(black)(2))) xx 30)/color(red)(cancel(2) xx -11)

y = -30/11

Step 3) Substitute -30/11 for y in the solution to the second equation at the end of Step 1 and calculate x:

x = 8 + 2y becomes:

x = 8 + (2 xx -30/11)

x = (11/11 xx 8) - 60/11

x = 88/11 - 60/11

x = (88 - 60)/11

x = 28/11

The solution is: x = 28/11 and y = -30/11 or (28/11, -30/11)