3x - 8y = 6 - - - eqn13x−8y=6−−−eqn1
5x + 2y = 2 - - - eqn25x+2y=2−−−eqn2
Using elimination method..
5 xx (3x - 8y = 6)5×(3x−8y=6)
3 xx (5x + 2y = 2)3×(5x+2y=2)
15x - 40y = 30 - - - eqn315x−40y=30−−−eqn3
15x - 6y = 6 - - - eqn415x−6y=6−−−eqn4
Subtract eqn3 and eqn4eqn3andeqn4
-34y = 24−34y=24
y = - 24/34y=−2434
y = - 12/17y=−1217
Substitute the value of yy into eqn1eqn1
3x - 8y = 63x−8y=6
3x - 8(-12/17) = 63x−8(−1217)=6
3x + 96/17 = 63x+9617=6
Multiply through by 1717
17(3x) + 17(96/17) = 17(6)17(3x)+17(9617)=17(6)
51x + 96 = 10251x+96=102
51x = 102 - 9651x=102−96
51x = 651x=6
x = 6/51x=651
x = 2/17x=217
Hence;
x = 2/17 and y = -12/17x=217andy=−1217