How do solve the following linear system?: -2x+5y=-3, x-3y=-2 ?

1 Answer
Mar 13, 2016

(x,y)=(19,7)

Explanation:

Solve by elimination and substitution

1)color(blue)(-2x+5y=-3

2)color(blue)(x-3y=-2

If you see carefully, you could eliminate -2x from the first equation by x in the second equation if we multiply x with 2 to get 2x

rarr2(x-3y=-2)

Use distributive property color(brown)(a(b+c=d),ab+ac=ad

rarr2x-6y=-4

Now, add both of the equations

rarr(-2x+5y=-3)+(2x-6y=-4)

rarr-y=-7

rArrcolor(green)(y=7

Substitute the value of y to the first equation

rarr-2x+5(7)=-3

rarr-2x+35=-3

rarr-2x=-3-35

rarr-2x=-38

rArrcolor(green)(x=(-38)/-2=38/2=19

Check (Substitute the values of x and y to the first equation)

color(orange)(-2(19)+5(7)=-3

color(orange)(-38+35=-3

color(orange)(-3=-3 =) correct!

Now to the second equation

color(indigo)(19-3(7)=-2

color(indigo)(19-21=-2

color(indigo)(-2=-2 :) correct!

**:. x and y have values of 19 and 7 **