How do I use the intermediate value theorem to prove every polynomial of odd degree has at least one real root?
1 Answer
Given any polynomial
Explanation:
Let
Note that
If
To prove that:
Let
Note that
So we find:
f(x_1) >= a_0x_1^n-(abs(a_1)x^(n-1)+abs(a_2)x^(n-2)+...+abs(a_n))
>= a_0x_1^n-(abs(a_1)x^(n-1)+abs(a_2)x^(n-1)+...+abs(a_n)x^(x-1))
= x^(n-1)(a_0x-(abs(a_1)+abs(a_2)+...+abs(a_n)))
= x^(n-1)((1+abs(a_0)+abs(a_1)+abs(a_2)+...+abs(a_n))-(abs(a_1)+abs(a_2)+...+abs(a_n)))
= x^(n-1)(1+abs(a_0)) > 0
If
To prove that, note that if
We have:
f(x) continuous over[-x_1, x_1] f(-x_1) < 0 < f(x_1)
So by the intermediate value theorem:
EE x in (-x_1, x_1) : f(x) = 0
If the leading coefficient (