How do I use the intermediate value theorem to prove every polynomial of odd degree has at least one real root?

1 Answer
Oct 27, 2015

Given any polynomial f(x) of odd degree and positive leading coefficient find x_1 such that f(-x_1) < 0 and f(x_1) > 0, so EE x in (-x_1, x_1) with f(x) = 0.

Explanation:

Let f(x) = a_0x^n+a_1x^(n-1)+...+a_n with a_0 != 0

Note that f(x) is a continuous function.

If x is sufficiently large and positive, f(x) > 0.

To prove that:

Let x_1 = (1+abs(a_0)+abs(a_1)+abs(a_2)+...+abs(a_n))/abs(a_0)

Note that x_1 > 1, so if m <= n-1 then x^m <= x^(n-1)

So we find:

f(x_1) >= a_0x_1^n-(abs(a_1)x^(n-1)+abs(a_2)x^(n-2)+...+abs(a_n))

>= a_0x_1^n-(abs(a_1)x^(n-1)+abs(a_2)x^(n-1)+...+abs(a_n)x^(x-1))

= x^(n-1)(a_0x-(abs(a_1)+abs(a_2)+...+abs(a_n)))

= x^(n-1)((1+abs(a_0)+abs(a_1)+abs(a_2)+...+abs(a_n))-(abs(a_1)+abs(a_2)+...+abs(a_n)))

= x^(n-1)(1+abs(a_0)) > 0

If n is odd and x sufficiently large and negative then f(x) < 0.

To prove that, note that if n is odd then a_0(-x)^n = -a_0x^n, so -f(-x) = a_0x^n-a_1x^(n-1)+...-a_n, hence f(-x_1) < 0

We have:

  • f(x) continuous over [-x_1, x_1]
  • f(-x_1) < 0 < f(x_1)

So by the intermediate value theorem:

EE x in (-x_1, x_1) : f(x) = 0

If the leading coefficient (a_0) of f(x) is negative then the same formula for x_1 yields f(x_1) < 0 < f(-x_1), hence there is a root in (-x_1, x_1) again.