How do I integrate intdx/(sqrt(x)(sqrt(x)+1))?

2 Answers
Oct 29, 2017

int dx/[sqrtx*(sqrtx+1)]=2Ln(sqrtx+1)+C

Explanation:

I=int dx/[sqrtx*(sqrtx+1)]

After using x=(tanu)^4 and dx=4(tanu)^3*(secu)^2*du transforms, I became,

I=int (4(tanu)^3*(secu)^2*du)/[(tanu)^2*(secu)^2]

=int 4tanu*du

=4ln(secu)+C

=2Ln[(secu)^2]+C

=2Ln[(tanu)^2+1]+C

After using x=(tanu)^4 and (tanu)^2=sqrt(x) inverse transforms, I found,

I=int dx/[sqrtx*(sqrtx+1)]

=2Ln(sqrtx+1)+C

Note: This integral also can be found by sqrt(x)=u, x=u^2 and dx=2u*du transforms,

Oct 29, 2017

2ln(sqrtx+1)+C

Explanation:

Use the substitutions:

u = sqrtx + 1

du = dx/(2sqrtx)

intdx/(sqrtx(sqrtx+1)) = 2intdx/(2sqrtx(sqrtx+1)) = 2int(du)/u = 2ln|u|+C

= 2ln(sqrtx+1)+C

Final Answer