How do I find the antiderivative of #y=csc(x)cot(x)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer GiĆ³ Mar 5, 2015 You can write: #intcsc(x)cot(x)dx=# as: #int1/sin(x)cos(x)/sin(x)dx=intcos(x)/sin^2(x)dx=# But: #d[sin(x)]=cos(x)dx# so your integral becomes: #intcos(x)/sin^2(x)dx=intsin^(-2)(x)d[sin(x)]=-1/sin(x)+c# Where you integrate #sin^-2(x)# as if it was #x^2# in a normal integral where you have #dx#. Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 25267 views around the world You can reuse this answer Creative Commons License