How do I evaluate #int(15 sqrt(x^3) + 8root3(x^2)) dx#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Massimiliano Feb 22, 2015 The answer is: #6x^(5/2)+24/5x^(5/3)+c#. Remembering that: #intx^ndx=x^(n+1)/(n+1)+c#, Than: #int(15x^(3/2)+8x^(2/3))dx=15*x^(3/2+1)/(3/2+1)+8*x^(2/3+1)/(2/3+1)+c=# #=15*x^(5/2)/(5/2)+8*x^(5/3)/(5/3)+c=15*2/5x^(5/2)+8*3/5x^(5/3)+c=# #=6x^(5/2)+24/5x^(5/3)+c#. Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 1664 views around the world You can reuse this answer Creative Commons License