How do find the derivative of #y= (1- sec x)/ tan x#? Calculus Differentiating Trigonometric Functions Derivative Rules for y=cos(x) and y=tan(x) 1 Answer maganbhai P. Jul 30, 2018 #(dy)/(dx)=cscx(cotx-cscx)# Explanation: Here , #y=(1-secx)/tanx# #=>y=1/tanx-secx/tanx# #=>y=cotx-(1/cosx)/(sinx/cosx)# #=>y=cotx-cscx# #(dy)/(dx)=-csc^2x-(-cscxcotx)# #(dy)/(dx)=-csc^2x+cscxcotx# #:.(dy)/(dx)=cscx(cotx-cscx)# Answer link Related questions What is the derivative of #y=cos(x)# ? What is the derivative of #y=tan(x)# ? How do you find the 108th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x)# from first principle? How do you find the derivative of #y=cos(x^2)# ? How do you find the derivative of #y=e^x cos(x)# ? How do you find the derivative of #y=x^cos(x)#? How do you find the second derivative of #y=cos(x^2)# ? How do you find the 50th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x^2)# ? See all questions in Derivative Rules for y=cos(x) and y=tan(x) Impact of this question 1795 views around the world You can reuse this answer Creative Commons License