How can you solve this equation for all values of x in the domain [0, 2pi) with exact values?

cot(x) - tan (x) = 2sqrt(3)

1 Answer
Sep 6, 2016

The Soln. Set is {pi/12, 13pi/12} sub [0,2pi).

Explanation:

cotx-tanx=2sqrt3

:. 1/tanx-tanx=2sqrt3

:. (1-tan^2x)/tanx=2sqrt3, i.e., (1-tan^2x)/(2tanx)=sqrt3

Recalling that, tan2x=(2tanx)/(1-tan^2x), we have,

tan2x=1/sqrt3=tan(pi/6)

;. 2x=pi/6, or, x=pi/12" is one soln."

As the Principal Period of tan fun. is pi, the other soln. is

pi+pi/12=13pi/12.

Thus, the Soln. Set is {pi/12, 13pi/12} sub [0,2pi).