How can we attempt to simplify expressions of the form #sqrt(p+qsqrt(r))# where #p, q, r# are rational?
1 Answer
If
#sqrt(p+qsqrt(r)) = sqrt(2p+2s)/2+sqrt(2p-2s)/2#
Explanation:
Consider the quartic:
#(x-sqrt(p+qsqrt(r)))(x+sqrt(p+qsqrt(r)))(x-sqrt(p-qsqrt(r)))(x+sqrt(p-qsqrt(r)))#
#=(x^2-(p+qsqrt(r)))(x^2-(p-qsqrt(r)))#
#=((x^2-p)-qsqrt(r))((x^2-p)+qsqrt(r)))#
#=(x^2-p)^2-q^2r#
#=x^4-2px^2+(p^2-q^2r)#
Suppose
Since this quartic has no terms of odd degree it can alternatively be factored as:
#=(x^2-kx+s)(x^2+kx+s)#
#=x^4+(2s-k^2)x^2+s^2#
Equating coefficients, we have:
#-2p = 2s-k^2#
and hence:
#k^2 = 2p+2s#
By the quadratic formula, the zeros of the quadratic factors are:
#(+-k+-sqrt(k^2-4s))/2 = +-sqrt(2p+2s)/2+-sqrt(2p-2s)/2#
where all combinations of signs are allowed.
In particular, if
#sqrt(p+qsqrt(r)) = sqrt(2p+2s)/2+sqrt(2p-2s)/2#
If
#sqrt(p+qsqrt(r)) = sqrt(2p+2s)/2-sqrt(2p-2s)/2#
Example
Simplify:
#sqrt(5+2sqrt(6))#
#{ (p=5), (q=2), (r=6), (s=sqrt(p^2-q^2r)=sqrt(5^2-2^2*6)=1) :}#
So:
#sqrt(5+2sqrt(6)) = sqrt(2p+2s)/2+sqrt(2p-2s)/2#
#color(white)(sqrt(5+2sqrt(6))) = sqrt(12)/2+sqrt(8)/2#
#color(white)(sqrt(5+2sqrt(6))) = sqrt(3)+sqrt(2)#