How do I solve the formula 16t^2 - 12t - h = 016t212th=0 for tt?

1 Answer
May 26, 2018

t=(3+-sqrt( 4h+9))/8t=3±4h+98

Explanation:

16t^2 - 12t - h = 016t212th=0

you would need to complete the square:

ax^2+bx +cax2+bx+c

a=1a=1

c=(1/2b)^2c=(12b)2

So first move the hh over:

16t^2 - 12t = h16t212t=h

now divide by 16 so a=1a=1

(16t^2 - 12t)/16 = h/1616t212t16=h16

t^2 - 3/4t = h/16t234t=h16

now we are ready to complete the square:

t^2 - 3/4t +c = h/16 +ct234t+c=h16+c

c=(1/2b)^2c=(12b)2

c=(1/2*-3/4)^2 = 9/64c=(1234)2=964

t^2 - 3/4t +9/64 = h/16 +9/64t234t+964=h16+964

(t-3/8)^2 = h/16 +9/64(t38)2=h16+964

sqrt((t-3/8)^2)=+-sqrt( h/16 +9/64)(t38)2=±h16+964

t-3/8=+-sqrt( h/16 +9/64)t38=±h16+964

t=3/8+-sqrt( h/16 +9/64)t=38±h16+964

t=3/8+-sqrt( (4h)/64 +9/64)t=38±4h64+964

t=3/8+-sqrt( (4h+9)/64)t=38±4h+964

t=3/8+-sqrt( (4h+9))/8t=38±(4h+9)8

t=(3+-sqrt( 4h+9))/8t=3±4h+98