How can i integrate 1/(x^8-x)?

2 Answers
Mar 10, 2018

int1/(x^8-x) dx=1/7lnabs((x^7-1)/x^7)+"c"

Explanation:

We want to find int1/(x^8-x)dx.

We start by transforming the integrand into something more integrable.

1/(x^8-x)=1/((1-x^-7)x^8)=x^-8/(1-x^-7)=(7x^-8)/(7(1-x^-7))

So

int1/(x^8-x)dx=int(7x^-8)/(7(1-x^-7))dx

Now let u=-x^-7 and du=7x^-8 and substitute this into the integral

int(7x^-8)/(7(1-x^-7))dx=1/7int1/(1+u)du=1/7lnabs(1+u)+"c"

Now substitute back for x

1/7lnabs(1+u)+"c"=1/7lnabs(1-x^-7)+"c"=1/7lnabs((x^7-1)/x^7)+"c"

Mar 10, 2018

int 1/(x^8-x) dx = 1/7 ln abs(x^7-1)- ln abs(x) + C

Explanation:

1/(x^8-x) = 1/(x(x^7-1))

color(white)(1/(x^8-x)) = A/x + (Bx^6+Cx^5+Dx^4+Ex^3+Fx^2+Gx+H)/(x^7-1)

Multiplying both ends by x^8-x we get:

1 = A(x^7-1) + (Bx^6+Cx^5+Dx^4+Ex^3+Fx^2+Gx+H)x

Hence:

A = -1

B = 1

C = D = E = F = G = H = 0

So:

int 1/(x^8-x) dx = int x^6/(x^7-1)-1/x dx

color(white)(int 1/(x^8-x) dx) = 1/7 ln abs(x^7-1)- ln abs(x) + C