How can I find X? (Exponential Equation)
2^(3x+1) = 3^(x-2)23x+1=3x−2
1 Answer
Apr 13, 2017
Explanation:
Given:
2^(3x+1) = 3^(x-2)23x+1=3x−2
Take logs of both sides to get:
(3x+1)ln 2 = (x-2)ln3(3x+1)ln2=(x−2)ln3
Multiply out to get:
(3 ln 2)x + ln 2 = (ln 3)x- 2 ln 3(3ln2)x+ln2=(ln3)x−2ln3
Subtract
(3 ln 2 - ln 3)x = - ln 2 - 2 ln 3(3ln2−ln3)x=−ln2−2ln3
Divide both sides by
x = -(ln 2 + 2 ln 3)/(3 ln 2 - ln 3)x=−ln2+2ln33ln2−ln3