How are completing the square and quadratic formula related?

1 Answer
Jun 10, 2015

The quadratic formula can be deduced from generically completing the square.

Explanation:

Given a generic quadratic equation:

f(x) = ax^2 + bx + c = 0

Notice that:

a(x+b/(2a))^2 = a(x^2 + 2b/(2a)x + b^2/(2a)^2)

=ax^2+bx + b^2/(4a)

So

f(x) = ax^2 + bx + c = a(x+b/(2a))^2 + (c-b^2/(4a))

If f(x) = 0 then

a(x+b/(2a))^2 + (c-b^2/(4a)) = 0

Add (b^2/(4a) - c) to both sides to get:

a(x+b/(2a))^2 = (b^2/(4a) - c) =(b^2-4ac)/(4a)

Divide both sides by a to get:

(x+b/(2a))^2 = (b^2-4ac)/(4a^2) = (b^2-4ac)/((2a)^2)

Hence:

x + b/(2a) = +- sqrt((b^2-4ac)/((2a)^2)) = +-sqrt(b^2-4ac)/(2a)

Subtract b/(2a) from both sides to get:

x = (-b+-sqrt(b^2-4ac))/(2a)