Given f(x)=xsqrt(2-x), how do you find the interval where f is decreasing?

1 Answer
Nov 13, 2016

f(x) is decreasing when x in[4/3, 2]

Explanation:

The domain of f(x) is (2-x)>=0
x<=2

To calculate the derivative, we use

(sqrtu)'=1/(2sqrtu)

and (gh)'=g'h+gh'

Let's calculate the derivative of f(x)

f'(x)=1*sqrt(2-x)+x*1/(2sqrt(2-x))*-1

f'(x)=sqrt(2-x)-x/(2sqrt(2-x))

=(2(2-x)-x)/(2sqrt(2-x))=(4-2x-x)/(2sqrt(2-x))

f'(x)=(4-3x)/(2sqrt(2-x))

f'(x)=0=>x=4/3

let's do a sign chart

color(white)(aaaaa)xcolor(white)(aaaaa)-oocolor(white)(aaaaa)4/3color(white)(aaaaa)2

color(white)(aaaaa)f'(x)color(white)(aaaaaa)+color(white)(aa)0color(white)(aaa)-

color(white)(aaaaaa)f(x)color(white)(aaaaaa)uarrcolor(white)(aa)0color(white)(aaa)darr

Therefore, f(x) is decreasing when x in[4/3, 2]

graph{xsqrt(2-x) [-4.382, 4.386, -2.19, 2.192]}