For which value of k will the roots of 2x^2+kx+1=0 be real?

1 Answer
Dec 2, 2016

The answer is k in ] -oo,-sqrt8 ] uu [sqrt8, oo[

Explanation:

In order for the roots of a quadratic equation, to de real, the dircriminant Delta>=0

If the equation is ax^2+bx+c=0

the discriminant is Delta=b^2-4ac

2x^2+kx+1=0

Delta= k^2-4*2*1>=0

k^2-8>=0

(k-sqrt8)(k+sqrt8)>=0

We do a sign chart

color(white)(aaaa)kcolor(white)(aaaa)-oocolor(white)(aaaa)-sqrt8color(white)(aaaa)sqrt8color(white)(aaaa)+oo

color(white)(aaaa)k+sqrt8color(white)(aaaa)-color(white)(aaaaa)+color(white)(aaaa)+

color(white)(aaaa)k-sqrt8color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaa)+

color(white)(aaaa)Deltacolor(white)(aaaaaaaa)+color(white)(aaaaa)-color(white)(aaaa)+

So, for Delta>=0

k in ] -oo,-sqrt8 ] uu [sqrt8, oo[