Find the points of inflection of the curve y=(1+x)/(1+x^2)?

1 Answer
Oct 17, 2014

y={1+x}/{1+x^2}

By Quotient Rule,

y'={1cdot(1+x^2)-(1+x)cdot2x}/{(1+x^2)^2} ={1-2x-x^2}/{(1+x^2)^2}

By Quotient Rule,

y''={(-2-2x)cdot(1+x^2)^2-(1-2x-x^2)cdot2(1+x^2)(2x)}/{(1+x^2)^4}

={2(1+x^2)(-1-x^2-x-x^3-2x+4x^2+2x^3)}/{(1+x^2)^4}

={2(x^3+3x^2-3x-1)}/{(1+x^2)^3}

={2(x-1)(x^2+4x+1)}/{(1+x^2)^3}

By setting y''=0,

{(x-1=0 Rightarrow x=1),(x^2+4x+1=0 Rightarrow x=-2pm sqrt{3}):}

Using the x-values found above to split (-infty,infty) into intervals

(-infty,-2-sqrt{3}),(-2-sqrt{3},-2+sqrt{3}),(-2+sqrt{3},1), " and " (1,infty).

Using sample points: x=-4,-2,0, and 2 for the intevals, respectively,

y''(-4)<0, y''(-2)>0, y''(0)<0, and y''(2)>0,

which indicate concavity changes at each point; therefore, there are inflection points at x=1, -2pmsqrt{3}.

The inflection points are

(1,y(1))=(1,1),

(-2-sqrt{3},y(-2-sqrt{3}))=(-2-sqrt{3},{1-sqrt{3 }}/4),

and

(-2+sqrt{3},y(-2+sqrt{3}))=(-2+sqrt{3},{1+sqrt{3}}/4).


I hope that this was helpful.