Find all exact angles,x in the interval[-pi, pi] that satisfy (a)2cos x=√3 (b)√3 sin x = cos x (c) 4sin²x = √(12) sin x (d) sec² x=2 ?

1 Answer
Dec 14, 2017

a. x = +- pi/6
b. x = pi/6, and x = (7pi)/6
c. x = pi/3, and x = (2pi)/3
d. 63^@43, and x = 243^@43

Explanation:

(a). 2cos x = sqrt3 --> cos x = sqrt3/2
Trig table and unit circle gives 2 solutions:
x= +- pi/6, or x = +- 30^@
(b). sqrt3sin x = cos x
Divide both sides by cos x (condition cos x != 0)
sqrt3tan x = 1--> tan x = 1/sqrt3 = sqrt3/3
Trig table and unit circle give 2 solutions:
x = pi/6 and x = pi/6 + pi = (7pi)/6
(c). 4sin ^2 x = sqr12sin x = 2sqrt3sin x.
Simplify by sin x (condition sin x != 0).
2sin x = sqrt3 --> sin x = sqrt3/2
Trig table and unit circle -->
x = pi/3, and x = (2pi)/3
(d). sin x.sec x = 2.
(sin x)(1/cos x) = tan x = 2
Calculator and unit circle give 2 solutions:
x = 63^@43, and x = 63.43 + 180 = 243^@43