(Exponential Equation) How do I find X?

5x=4x+1

2 Answers
Apr 13, 2017

x6.21.

Explanation:

Take the natural logarithm of both sides.

ln(5x)=ln(4x+1)

Now use lnan=nlna.

xln5=(x+1)ln4

xln5=xln4+ln4

xln5xln4=ln4

x(ln5ln4)=ln4

This can be simplified further using lnalnb=ln(ab).

x(ln(54))=ln4

x=ln4ln(54)

If you prefer an approximation, we can take x6.21.

Hopefully this helps!

Apr 13, 2017

I got: x=ln(4)ln(5)ln(4)

Explanation:

Here we can try applying the natural log, ln, on both sides and apply some properties of logs:
ln(5)x=ln(4)x+1
then:
xln(5)=(x+1)ln(4)
rearrange:
xln(5)=xln(4)+ln(4)
xln(5)xln(4)=ln(4)
x[ln(5)ln(4)]=ln(4)
x=ln(4)ln(5)ln(4)
if you have a pocket calculator we can easily evaluate the natural log to get:
x=6.21256