Describe a sequence of transformations that transform the graph of f(x) into the graph of g(x)? f(x)=sqrtx and g(x)=-3(sqrt(x+1))-4

2 Answers
Dec 10, 2015

(x, f(x)) rightarrow (x - 1, sqrt x) rightarrow (x - 1, -3 sqrt(x)) rightarrow (x - 1, g(x-1))

Explanation:

1) Translation. x' := x - 1 ; y' = y.
Just send (x,sqrt(x)) rightarrow (x - 1, sqrt(x)) therefore (0, 0) rightarrow (-1, 0)
And (1, 1) rightarrow (0, 1)

2) Stretch. x'' = x' ; y'' := -3y'
Just send (x', y') rightarrow (x', -3y') therefore (0, 1) rightarrow (0, -3)
This is a dilatation (multiply by 3)
followed by a refraction (multiply by -1). The mirror is x-axis.

3) Translation. x''' := x'' ; y''' := y'' - 4.
Just send (x'', y'') rightarrow (x'', y'' - 4)
Therefore (-1,0) rightarrow (-1, -4)
And (0, -3) rightarrow (0, -7)

Dec 11, 2015

f(x)=sqrtx
(16,4)
graph{sqrtx [-1.705, 18.295, -3.44, 6.56]}

a(x)=sqrt(xcolor(red)(+1))
Function shifts one to the left.
(15,4)
graph{sqrt(x+1) [-2.16, 17.84, -2.08, 7.92]}

b(x)=color(red)3(sqrt(x+1))
Function is stretched vertically by a factor of "3".
(15,12)
graph{3sqrt(x+1) [-2.08, 33.48, -2.43, 15.35]}

c(x)=color(red)-3(sqrt(x+1))
Function is reflected across the x-axis.
(15,-12)
graph{-3sqrt(x+1) [-3.42, 32.14, -15.24, 2.54]}

g(x)=-3(sqrt(x+1))color(red)(-4)
Function is moved "4" units down.
(15,-16)
graph{-3sqrt(x+1)-4 [-4.75, 35.25, -16.85, 3.15]}