Convert the polar equation to rectangular form? r=10 cos theta-6 sin thetar=10cosθ6sinθ

A. (x-5)^2 + (y+3)^2 =34(x5)2+(y+3)2=34
B. (x-3)^2 + (y-5)^2 =34(x3)2+(y5)2=34
C. y=10 sinx - 6 cos x
D. r=10x-6y

1 Answer
May 7, 2018

A

Explanation:

Converting from polar to rectangular:
r^2= x^2+y^2r2=x2+y2
rcostheta=xrcosθ=x
rsintheta=yrsinθ=y

r=10 cos theta-6 sin thetar=10cosθ6sinθ
Multiply by rr on both sides:
r^2= 10rcostheta-6rsinthetar2=10rcosθ6rsinθ

x^2+y^2= 10x-6yx2+y2=10x6y

x^2-10x+y^2+6y=0x210x+y2+6y=0

Complete the square:

x^2-10x+25+y^2+6y+9=34x210x+25+y2+6y+9=34

(x-5)^2+(y+3)^2= 34(x5)2+(y+3)2=34

I would go with answer choice A.A.