A capacitor is formed by two square metal plates of edge a, separated by a distance d, Dielectrics of dielectric constants #K_1# and #K_2# are filled in the gap as shown in figure. Find the capacitance.?
Answer: #C = (ε_0K_1K_2a^2ln[K_1/K_2])/((K_1 - K_2)d)#
Answer:
1 Answer
Consider an infinitesimal strip of of capacitor of thickness
Plate separation for lower part is
We know that equivalent capacitance of capacitors connected in series is given by the expression
#1/(dC_(eq))=1/(dC_(K_1))+1/(dC_(K_2))#
Inserting value for Parallel-plate capacitor of plate area
#1/(dC_(eq))=(d-xtanalpha)/(K_1epsilon_0(adx))+(xtanalpha)/(K_2epsilon_0(adx))#
#=>1/(dC_(eq))=1/(epsilon_0adx)[(d-xtanalpha)/(K_1)+(xtanalpha)/(K_2)]#
#=>dC_(eq)=(epsilon_0adx)/[(d-xtanalpha)/(K_1)+(xtanalpha)/(K_2)]#
#=>dC_(eq)=(K_1K_2epsilon_0adx)/[K_2(d-xtanalpha)+K_1(xtanalpha)]#
#=>dC_(eq)=(K_1K_2epsilon_0adx)/[K_2d+(K_1-K_2)(tanalpha)x]#
Integrating both sides with respect to respective variables from
#C_(eq)=(K_1K_2epsilon_0a)int_0^a(dx)/[K_2d+(K_1-K_2)(tanalpha)x]#
Using the following integral we get
#int(dx)/(b*x+c)=ln(abs(b*x+c))/b#
Inserting
Simplifying
#C_(eq)=(K_1K_2epsilon_0a^2)/((K_1-K_2)d)[ln((K_1d)-(ln(K_2d)]#
#=>C_(eq)=(K_1K_2epsilon_0a^2)/((K_1-K_2)d)ln(K_1/K_2)#