Simplify 2^(3+5log_2x)?

1 Answer
Feb 8, 2018

2^(3+5log_2x)=8x^5

Explanation:

Let a^(log_ax)=u. Then taking logarithm to the base a on both sides we get

log_ax xxlog_aa=log_au

or log_au=log_ax and therefore u=x i.e.

a^(log_ax)=x

Using this in 2^(3+5log_2x)

= 2^3xx2^(5log_2x)

= 2^3xx(2^(log_2x))^5 - as a^(mn)=(a^m)^n or (a^n)^m

= 8x^5