cos^2 3x+3sin3x=3cos23x+3sin3x=3
=>1-sin^2 3x+3sin3x=3⇒1−sin23x+3sin3x=3
=>sin^2 3x-3sin3x+2=0⇒sin23x−3sin3x+2=0
=>sin^2 3x-2sin3x-sin3x+2=0⇒sin23x−2sin3x−sin3x+2=0
=>sin3x(sin3x-2)-(sin3x-2)=0⇒sin3x(sin3x−2)−(sin3x−2)=0
=>(sin3x-2)(sin3x-1)=0⇒(sin3x−2)(sin3x−1)=0
sin3x=2->"not possible"sin3x=2→not possible
So sin3x=1=sin(pi/2)sin3x=1=sin(π2)
=>3x=npi+(-1)^npi/2" where "ninZZ
=>x=(npi)/3+(-1)^npi/6" where "ninZZ