If {(n-1)!+n!}/((n+1)!) =1/6, find n?

1 Answer
Oct 10, 2017

n=6

Explanation:

{(n-1)!+n!}/((n+1)!) =1/6

hArr{(n-1)!+n(n-1)!}/(n(n+1)xx(n-1)!) =1/6

or ((n-1)!(1+n))/((n-1)!(n^2+n)) =1/6

or (1+n)/(n^2+n)=1/6

or n^2+n=6+6n

or n^2-5n-6=0

i.e. (n-6)(n+1)=0

i.e. n=6 or -1

But as (-1)! is not defined n=6