Question #1057d
1 Answer
Explanation:
Start by writing the unbalanced chemical equation that describes the decomposition of magnesium nitrate
#"Mg"("NO"_ 3)_ (2(s)) -> "MgO"_ ((s)) + "O"_ (2(g)) + "NO"_ (2(g))#
Now, notice that you have
To balance out the nitrogen, multiply the nitrogen dioxide molecules by
#"Mg"("NO"_ 3)_ (2(s)) -> "MgO"_ ((s)) + "O"_ (2(g)) + 2"NO"_ (2(g))#
Next, focus on the oxygen. You have a total of
#overbrace("1 O")^(color(blue)("from MgO")) + overbrace("2 O")^(color(blue)("from O"_2)) + overbrace("4 O")^(color(blue)("from 2 NO"_2)) = "7 O"#
on the products' side. To balance out the oxygen, multiply the oxygen molecule by
#"Mg"("NO"_ 3)_ (2(s)) -> "MgO"_ ((s)) + 1/2"O"_ (2(g)) + 2"NO"_ (2(g))#
The products' side will now have
#overbrace("1 O")^(color(blue)("from MgO")) + overbrace("1 O")^(color(blue)("from"color(white)(.)1/2"O"_2)) + overbrace("4 O")^(color(blue)("from 2 NO"_2)) = "6 O"#
Since you have
#"Mg"("NO"_ 3)_ (2(s)) -> "MgO"_ ((s)) + 1/2"O"_ (2(g)) + 2"NO"_ (2(g))#
If you want, you can get rid of the Fractional coefficient by multiplying all the chemical species involved in the reaction by
#2"Mg"("NO"_ 3)_ (2(s)) -> 2"MgO"_ ((s)) + (2 * 1/2)"O"_ (2(g)) + (2 * 2)"NO"_ (2(g))#
to get
#2"Mg"("NO"_ 3)_ (2(s)) -> 2"MgO"_ ((s)) + "O"_ (2(g)) + 4"NO"_ (2(g))#