Question #9d454

2 Answers
Aug 2, 2017

See below.

Explanation:

sin x + cos x + 2.sqrt(2) . sin x . cos x= 0sinx+cosx+2.2.sinx.cosx=0 or

cosx = -sinx/(1+2sqrt2 sinx)cosx=sinx1+22sinx

now making y = sinxy=sinx we have

sqrt(1-y^2) = -y/(1+2sqrt2 y)^21y2=y(1+22y)2 or squaring both sides

1-y^2=y^2/(1+2sqrt2y)^21y2=y2(1+22y)2 or

(1-y^2)(1+2sqrt2y)^2-y^2=0(1y2)(1+22y)2y2=0 or

(2y^2+2sqrt2y+1)(-4y^2+2sqrt2y+1)=0(2y2+22y+1)(4y2+22y+1)=0 then we have

{(2y^2+2sqrt2y+1=0->{(y=-1/sqrt2),(y=-1/sqrt2):}),(-4y^2+2sqrt2y+1=0->{(y=1/4 (sqrt[2] - sqrt[6])),(y=1/4 (sqrt[2] + sqrt[6])):}):}

or

sinx={(-1/sqrt2->x = (5pi)/4 + 2 k pi),(1/4 (sqrt[2] - sqrt[6])->x = arcsin(1/4 (sqrt[2] - sqrt[6]))+2kpi),(1/4 (sqrt[2] + sqrt[6])->x = pi-arcsin(1/4 (sqrt[2] + sqrt[6]))+2kpi):}

Aug 3, 2017

x = (5pi)/4 + 2kpi
x = (7pi)/12 + 2kpi
x = (23pi)/12 + 2kpi

Explanation:

sin x + cos x + 2sqrt2.sin x.cos x = 0 (1)
Call sin x + cos x = t
Square both sides:
(sin x + cos x)^2 = sin^2 x + cos ^2 x + 2cos x.sin x =
= 1 + 2cos x.sin x = t^2 -->
2cos x.sin x = (t^2 - 1)
2sqrt2.cos x.sin x = sqrt2(t^2 - 1)
The equation (1) becomes:
t + sqrt2(t^2 - 1) = 0
sqrt2t^2 + t - sqrt2 = 0
Solve this quadratic equation for t
D = d^2 = b^2 - 4ac = 1 + 8 = 9 --> d = +- 3
There are 2 real roots:
t = - b/(2a) +- d/(2a) = - 1/(2sqrt2) +- 3/(2sqrt2) =
t1 = - 4/(2sqrt2) = - 2/sqrt2 = - sqrt2
t2 = 2/(2sqrt2) = sqrt2/2
a. sin x + cos x = t1 = - sqrt2
Use trig identity: sin a + cos a = sqrt2.cos (a - pi/4)
cos (x - pi/4) = - sqrt2/sqrt2 = - 1 -->
(x - pi/4) = pi --> x = pi + pi/4 = (5pi)/4,
b. sin x + cos x = t2 = sqrt2.cos (x - pi/4) = sqrt2/2
cos (x - pi/4) = 1/2
x - pi/4 = pi/3 --> x = (pi)/3 + pi/4 = (7pi)/12
x - pi/4 = (5pi)/3 --> x = (5pi)/3 + pi/4 = (23pi)/12