Here positions of three points in 3D are given as (taking unit of length as m)
P->(4,-1,5)
P_1->(-1,-1,0)
P_2->(3,-1,-3)
So
vec(PP_1)=-5hati-5hatk
vec(PP_2)=-hati-8hatk
vec(P_1P_2)=4hati-3hatk
If the positon of bird ,when it is on line P_1P_2 be O.
1st method
Let OP_1:OP_2=m:n
So vec(PO)=(n*vec(PP_1)+m*vec(PP_2))/(m+n)
=>vec(PO)=(n(-5hati-5hatk)+m(-hati-8hatk))/(m+n)
=>vec(PO)=((-5n-m)hati+(-5n-8m)hatk)/(m+n)
Now vec(PO) and vec(P_1P_2) are perpendicularly inclined.
So vec(PO) *vec(P_1P_2)=0
=>(4(-5n-m)-3(-5n-8m))/(m+n)=0
=>-20n-4m+15n+24m=0
=>20m=5n
=>m/n=1/4
~~~~~~~~~~~~~~~~~~~~~~~~~~
2nd method
Then vec(PO) will be perpendicular to vec(P_1P_2)
So vec(OP_1) is the projection of vec(PP_1) on vec (P_2P_1
Hence absvec(OP_1)=vec(P_2P_1)*vec(PP_1)
=((-4hati+3hatk)*(-5hati-5hatk))/abs(-4hati+3k)
=(20-15)/sqrt((-4)^2+3^2)=1
Again vec(OP_2) is the projection of vec(PP_2) on vec (P_1P_2
absvec(OP_2)=vec(P_1P_2)*vec(PP_1)
=((4hati-3hatk)*(-hati-8hatk))/abs(4hati-3hatk)
=(-4+24)/sqrt(4^2+(-3)^2)=4
So vec(PO) divides P_1P_2 ar O in the ratio OP_1:OP_2=1:4
~~~~~~~~~~~~~~~~~~~~~~~~~~
Finally
vec(PO)=(4*vec(PP_1)+1*vec(PP_2))/(1+4)
=>vec(PO)=(4(-5hati-5hatk)+1(-hati-8hatk))/5
=>vec(PO)=(-20hati-20hatk-hati-8hatk)/5
=>vec(PO)=(-21hati-28hatk)/5
=>abs(vec(PO))=1/5abs(-21hati-28hatk)
=>abs(vec(PO))=1/5*sqrt((-21)^2+(-28)^2)
=>abs(vec(PO))=1/5*sqrt(1225)=7 m
Time (t) taken by the bird to cover the distance PO is
t="distance PO"/"velocity of the bird"=(7m)/(2m"/"s)=3.5 s