Question #28e6e

1 Answer
Jun 16, 2017

sin theta sec^7 theta+cos theta cosec^7 theta

=sintheta/costheta sec^6 theta+costheta/sintheta cosec^6 theta

=tantheta (1+tan^2theta)^3 +1/tantheta (1+cot^2theta)^3

=tantheta (1+tan^2theta)^3 +1/tantheta (1+1/tan^2theta)^3

=sqrt(a/b) (1+a/b)^3 +sqrt(b/a) (1+b/a)^3

=sqrt(a/b)xx (a+b)^3/b^3 +sqrt(b/a) xx(a+b)^3/a^3

=(a+b)^3(sqrta/b^(7/2) +sqrtb/a^(7/2))

=((a+b)^3(a^4+b^4))/((ab)^(7/2))

Q-2

Let
tanA=3 and tanB=2

So A>B

We are to find out

sin2(A-B)

Expanding we get

sin2(A-B)=sin2Acos2B-cos2Asin2B

So we are to know

sin2A,cos2B,cos2A and sin2B

Now sin2A=(2tanA)/(1+tan^2A)

=>sin2A=(2xx3)/(1+3^2)=3/5

And

sin2B=(2tanB)/(1+tan^2B)

=>sin2B=(2xx2)/(1+2^2)=4/5

cos2A=(1-tan^2A)/(1+tan^2A)

=>cos2A=(1-3^2)/(1+3^2)=-4/5

And

cos2B=(1-tan^2B)/(1+tan^2B)

=>cos2B=(1-2^2)/(1+2^2)=-3/5

Now inserting the values we get

sin2(A-B)

=sin2Acos2B-cos2Asin2B

=3/5xx(-3/5)-(-4/5)xx4/5

=-9/25+16/25=7/25