sin theta sec^7 theta+cos theta cosec^7 theta
=sintheta/costheta sec^6 theta+costheta/sintheta cosec^6 theta
=tantheta (1+tan^2theta)^3 +1/tantheta (1+cot^2theta)^3
=tantheta (1+tan^2theta)^3 +1/tantheta (1+1/tan^2theta)^3
=sqrt(a/b) (1+a/b)^3 +sqrt(b/a) (1+b/a)^3
=sqrt(a/b)xx (a+b)^3/b^3 +sqrt(b/a) xx(a+b)^3/a^3
=(a+b)^3(sqrta/b^(7/2) +sqrtb/a^(7/2))
=((a+b)^3(a^4+b^4))/((ab)^(7/2))
Q-2
Let
tanA=3 and tanB=2
So A>B
We are to find out
sin2(A-B)
Expanding we get
sin2(A-B)=sin2Acos2B-cos2Asin2B
So we are to know
sin2A,cos2B,cos2A and sin2B
Now sin2A=(2tanA)/(1+tan^2A)
=>sin2A=(2xx3)/(1+3^2)=3/5
And
sin2B=(2tanB)/(1+tan^2B)
=>sin2B=(2xx2)/(1+2^2)=4/5
cos2A=(1-tan^2A)/(1+tan^2A)
=>cos2A=(1-3^2)/(1+3^2)=-4/5
And
cos2B=(1-tan^2B)/(1+tan^2B)
=>cos2B=(1-2^2)/(1+2^2)=-3/5
Now inserting the values we get
sin2(A-B)
=sin2Acos2B-cos2Asin2B
=3/5xx(-3/5)-(-4/5)xx4/5
=-9/25+16/25=7/25