Question #7d0d9

2 Answers
May 27, 2017

n = 1n=1

Explanation:

I'm going to assume the question is 5^(n + 1) = sqrt(25^(3n - 1))5n+1=253n1

Square both sides to get:

(5^(n + 1))^2 =(sqrt(25^(3n - 1)))^2(5n+1)2=(253n1)2

Use (a^n)^m = a^(nm)(an)m=anm

5^(2n + 2) = 25^(3n - 1)52n+2=253n1

5^(2n + 2) = (5^2)^(3n - 1)52n+2=(52)3n1

5^(2n + 2) = 5^(6n - 2)52n+2=56n2

2n + 2 = 6n - 22n+2=6n2

4 = 4n4=4n

1= n1=n

Hopefully this helps!

May 27, 2017

color(brown)(n=1n=1

Explanation:

5^(n+1)=(sqrt25)^(3n-1)5n+1=(25)3n1

:.5^(n+1)=5^(3n-1)

base numbers are the same then:

:.n+1=3n-1

:.n-3n=-1-1

:.-2n=-2

multiply both sides by -1

:.2n=2

:.color(brown)(n=1