Evaluate the limit? : #lim_(x rarr 0) ( tanx-x ) / (x-sinx) #

1 Answer
May 7, 2017

# lim_(x rarr 0) ( tanx-x ) / (x-sinx) = 2 #

Explanation:

We want to find:

# L = lim_(x rarr 0) ( tanx-x ) / (x-sinx) #

Method 1 : Graphically
graph{( tanx-x ) / (x-sinx) [-8.594, 9.18, -1.39, 7.494]}

Although far from conclusive, it appears that:

# L = 2 #

Method 2 : L'Hôpital's rule

The limit is of an indeterminate form #0/0#, and so we can apply L'Hôpital's rule which states that for an indeterminate limit then, providing the limits exists then:

# lim_(x rarr a) f(x)/g(x) = lim_(x rarr a) (f'(x))/(g'(x)) #

And so applying L'Hôpital's rule we get:

# L = lim_(x rarr 0) (d/dx ( tanx-x )) / (d/dx (x-sinx)) #

# \ \ \ = lim_(x rarr 0) ( sec^2x-1 ) / (1-cosx) #

This limits is also of an indeterminate form, so we can apply L'Hôpital's again to get:

# L = lim_(x rarr 0) (d/dx ( sec^2x-1 ) ) / (d/dx (1-cosx) ) #

# \ \ \ = lim_(x rarr 0) ( 2secx(secxtanx) ) / (sinx) #
# \ \ \ = lim_(x rarr 0) ( 2sec^2x(sinx/cosx) ) / (sinx) #
# \ \ \ = lim_(x rarr 0) 2sec^2x(1/cosx) #
# \ \ \ = 2lim_(x rarr 0) sec^3x #
# \ \ \ = 2 #