How do you solve #2^(5x)/4^(3x)=8*16^(9x)# ?
1 Answer
Apr 16, 2017
Explanation:
Given:
#2^(5x)/4^(3x)=8*16^(9x)#
This can be rewritten in terms of powers of
#2^(5x)/((2^2)^(3x)) = 2^3*(2^4)^(9x)#
Then using:
#(a^b)^c = a^(bc)" "# (when#a > 0# )
we can rewrite this as:
#2^(-x) = 2^(5x-6x) = 2^(5x)/2^(6x) = 2^3*2^(36x) = 2^(36x+3)#
Note that
#-x = 36x+3#
Hence:
#x = -3/37#