1+2cscx=cotx+3cscx1+2cscx=cotx+3cscx
=>sinx( 1+2/sinx)=sinx(cosx/sinx+3/sinx)⇒sinx(1+2sinx)=sinx(cosxsinx+3sinx)
=>sinx+2=cosx+3⇒sinx+2=cosx+3
=>1/sqrt2sinx-1/sqrt2cosx=1/sqrt2⇒1√2sinx−1√2cosx=1√2
=>cos(pi/4)sinx-sin(pi/4)cosx=sin(pi/4)⇒cos(π4)sinx−sin(π4)cosx=sin(π4)
=>sin(x-pi/4)=sin(pi/4)⇒sin(x−π4)=sin(π4)
=>x-pi/4=npi+(-1)^npi/4" where " nin ZZ
=>x=npi+(-1)^npi/4+pi/4" where " nin ZZ