Question #1b9c7

2 Answers
Apr 5, 2017

Solution to a) ->x=1/2x=12

Explanation:

Solution to a)

Adding logs reflects the action of multiplication of the source values.

So ln(x-1)+ln(3)=ln(x)ln(x1)+ln(3)=ln(x) is the same as: ln( 3[x-1])=ln(x)ln(3[x1])=ln(x)

Using an example: note that ln^(-1)(a)=aln1(a)=a

So " "ln^(-1)(3[x-1])" "=" "ln^(-1)(x) ln1(3[x1]) = ln1(x)

" "3(x-1)" "=" "x 3(x1) = x

" "3x-1=x 3x1=x

" "2x=1 2x=1

" "x=1/2 x=12

Apr 5, 2017

Solution to b) " "x~~8.773... to 3 decimal places

Explanation:

Solution to b)

Using an example: note that " "2ln(a) -> ln(a^2)

So we have:

ln[(5x)^3]-ln(x^2)=7

ln[(125x^3)/x^2]=7

ln(125x)=7

ln^(-1)(125x)=ln^(-1)(7) larr" not convinced this will work!"

Trying something else!

ln(125)+ln(x)=7

ln(x)=7-ln(125)

x=ln^(-1)(x)= ln^(-1)[color(white)(2/2)7-ln(125)color(white)(2/2)]

x~~8.773... to 3 decimal places